Analysis and Approaches Topic Checklist

Standard and Higher

Higher only

$D-A B A$		$\bullet \bullet$	(\%)	
Number and Algebra				
Standard form				
Geometric series (including sum of infinite geometric series)				
				Indices rules - multiplication, division, negative powers and rational powers
Solving logs and dexponential equations (inculuing hidden quadratics with exponentials)				
Logs -5 rules (index, power, mutiticication, division, change of base)				
Algebraic proofs				
Binomial expansion- integer powers				
$\frac{\text { Counting principles, permutation and combinations }}{\text { Binomial exanasion fractiona and negative owers }}$				
Binomia expansion - fractiona a and negative powers				
Complex numbers				
Proof b induction				
Proof fr contraderiction				
Functions				
3 forms of astraigh line				
Graients and interceptsMididoint and distances				
Straight Line Graphs - finding equations				
Functions - basic calculations including composite and tryes of functions (one to one, many to one)				
Functions - inverse (calculating and using the fact that domain of inverse is range and range is domain,				
Using a calculator to sketch and locate key features of graphs of functions max, min, zeros, intercepts,				
Quadratics- - graph, intercepets, axis of fsymetr, vertex				
Quadratiss - converiting between 3 forms (fatatorised, vertex and standard)				
Quadratics s-sviving inequalities				
Rational functions $f(x)=\frac{a x+b}{c x+d}$ and their graphs (including equations of vertical and horizontal asymptotes)				
Exponential and logarithmic fraphs				
Polynomial functions - graph sand zeros				
Factor and reminider theorem				
Sum and products of roots of polynomial equations				
Rational functions $f(x)=\frac{a x+b}{c^{2}+d x+e}$ or $f(x)=\frac{a x^{2}+b x+c}{d x+e}$ and their graphs (including equations of vertical, horizontal and slant asymptotes)				
Odd and even functions				
eriodic functions Solutions of inequalities both graphically and analytically e.g. solve $g(x) \geq f(x)$				
Graphs of transformations (modulus, reciprocal, translations, sums/differences, squares, inverse). For example, g^{\prime} iven the graph of $f(x)$ and then need to graph any of $\|f(x)\|, f(\|x\|), \frac{1}{f(x)^{\prime}}$ $f(a x+b),[f(x)]^{2}, f^{-1}(x)$				
Solutions and modulus and inequalities				
Geometry and Trigonometry				
Size of an angle between two intersecting lines or betweena line and a place				
Sine, cosine, and tangent ratios sing special triangles (SOHCAHTOA)				
Sine/cosine Rule (including ambiguus case of sine rule)				
Area of triangle				
Angles of elevation and depression				
Radians				
Arc lenths and areas of sectors				

Finding trig values of multiple angles of special angles using the unit circle Exact values of trigonometric ratios of $0, \frac{\pi}{6} \cdot \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$ and their multiples.				
Given the value of one trig function, find another (relationship between ratios)				
Identities $\sin ^{2} x+\cos ^{2} x=1$ and $\tan x=\frac{\sin x}{\cos x}$				
Double angle identity $\sin 2 x=2 \sin x \cos x$ $\cos 2 x=\cos ^{2} x-\sin ^{2} x$				
Transformations of trig functions and their graphs				
Trig Modelling -Real life contexts such as height of a tide and motion of a ferris wheel. Also including given graph find equation and vice versa (involves finding period, amplitude, phase shift).				
Solving trig equations (including quadratics)				
Identities $1+\tan ^{2} x=\sec ^{2} x$ and $1+\cot ^{2} x=\operatorname{cosec}^{2} x$				
Double angle identity $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$				
Compound angle identity $\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B, \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$ $\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$ This includes turning $a \sin x \pm b \cos x$ or $\mathrm{a} \cos x \pm b \sin x$ into $r \sin (\theta \pm \alpha)$ or $r \cos (\theta \pm \alpha) \mathrm{b}$ forms				
Inverse Trig				
Relationship between trig functions (co-functions) $\sin \left(180^{\circ}-\theta\right)=\sin \theta$ $\cos \left(180^{\circ}-\theta\right)=-\cos \theta$ $\tan \left(180^{\circ}-\theta\right)=-\tan \theta$				
Identities and solving with reciprocal functions: $\sec x=\frac{1}{\cos x}, \operatorname{cosec} x=\frac{1}{\sec x} \cdot \cot x=\frac{1}{\tan x}$				
Vector basics - Basic Form, properties, magnitude, unit vector, sums and differences, multiplication and zero vector, unit vectors, position and displacement vector, perpendicular and parallel vectors				
Vectors - angles between 2 vectors, 2 lines, 2 planes and a line and plane				
Vectors - parallel, skew and intersecting lines				
Vector equations in 2 and 3 dimensions (vector equation of a line, cartesian equation of a line, parametric Form of a line, Equation of a plane, vector equation of a plane and cartesian equation of a plane)				
Vector products - scalar and cross product (including representation of area of a parallelogram)				
Vector intersections - 2 lines, 2 planes and a line and a plane				

Concepts of population, sample, random sample, discrete and continuous data
Sampling technique - Simple random, convenience, systematic, quota and stratified sampling method Interpretation of outliers
Presentation of data (discrete and continuous) - lists and grouped/ungrouped frequency distributions (tables).
Histograms
Cumulative frequency; cumulative frequency graphs; use to find median, quartiles, percentiles, range and interquartile range (IQR)
Box and whisker
Measures of central tendency (mean, median and mode).
Estimation of mean from grouped data
Modal class
Measures of dispersion (interquartile range, standard deviation and variance)
Effect of constant changes on the original data
Quartiles of discrete data
Scatter diagrams; lines of best fit, by eye, passing through the mean point
Linear correlation of bivariate data (Pearson's product-moment correlation coefficient and line of best fit)
Find and use of the equation of the regression line for prediction purposes (reliability)
Interpret the meaning of the parameters, a and b, in a linear regression $y=a x+b$
Sample Space
Venn diagram
Tree diagram
Two-way tables
Addition formula
Mutually exclusive events
Independent events
Conditional probability
Concept of discrete random variables and their probability distributions. Expected value (mean), fo iscrete data. Applications such as fair game
Binomial distribution (including mean and variance)
Normal distribution (probability calculations and working backwards to find the value, mean or sd. Bayes Theorem
Variance of a discrete random variable
Continuous random variables and their probability density functions
Mode and median of continuous random variables
Mean, variance and standard deviation of both discrete and continuous random variables The effect of linear transformations of X

Calculus

Concept of a limit

Derivative interpreted as gradient function and as rate of change
$y=x^{n}$ differentiation technique
Increasing/Decreasing (including graphical representations)
Equations of Tangents and Normals
Composite functions differentiation techniques - chain rule $\left((f(x))^{n}, \ln f(x), e^{f(x)}, \sin f(x), \cos f(x)\right.$
Product and Quotient Rul

www.mymathscloud.com

